Sample Paper 4: Paper 2

Question 8 (25 marks)

Question 8 (a)

$$
\begin{aligned}
& P(4)=\frac{1}{6} \\
& P(\text { Not } 4)=\frac{5}{6} \\
& P=1-\left\{{ }^{20} C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{20}+{ }^{20} C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{19}+{ }^{20} C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{18}+{ }^{20} C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{17}+{ }^{20} C_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{16}+{ }^{20} C_{5}\left(\frac{1}{6}\right)^{5}\left(\frac{5}{6}\right)^{15}\right\} \\
& \\
& =1-0.898 \\
& \quad=0.102 \\
& \quad=10.2 \%
\end{aligned}
$$

Question 8 (b)

A probability of 10.2% means that a fair die will give six or more $4 \mathrm{~s} 10.2 \%$ of the time in 20 throws of a die. So there is nothing unusual about the die used in the casino. If the probability of at least six 4 s when a fair die was tossed 20 times was less that 5% then this probability is so small that it hasn't happened by chance and so the die is biased.

